
De�nition 1. Let N denote the set of all measures with natural spectra, i.
e.

N = {µ ∈M(T) : µ̂(Z) = σ(µ)}.
It is proved in [Z] that this set is not closed under addition. In the

following proposition we obtain few properties of N which will be used later.

Proposition 2. The set of all measures with natural spectra is involutive
(µ ∈ N ⇒ µ̃ ∈ N ), closed subset of M(T) which is also closed under
multiplication by complex numbers. Moreover, this set is closed under an
action of the functional calculus i. e. for µ ∈ N and a holomorphic function
de�ned on some open neighborhood of σ(µ) we have f(µ) ∈ N .

Proof. Let us take µ ∈ N . Then it is obvious that αµ ∈ N for all α ∈ C.
Moreover, σ(µ̃) = σ(µ) and ̂̃µ(n) = µ̂(n) for n ∈ Z shows involutivness of
N . Let (µn)∞n=1 ⊂ N satisfy ||µn − µ|| → 0 as n → ∞ for some µ ∈ M(T)
and �x ε > 0. Then for any ϕ ∈M(M(T)) and k ∈ Z we have

|µ̂(ϕ)− µ̂(k)| ≤ |µ̂(ϕ)− µ̂n(ϕ)|+ |µ̂n(ϕ)− µ̂n(k)|+ |µ̂n(k)− µ̂(k)| ≤
2||µ− µn||+ |µ̂n(ϕ)− µ̂n(k)|.

Now, we �x n0 ∈ N such that ||µ − µn0|| < ε
3
. Since µn0 ∈ N there exists

kn0 ∈ N satisfying |µ̂n0(ϕ)− µ̂n0(kn0)| < ε
3
and we get

|µ̂(ϕ)− µ̂(kn0)| < ε.

Since the spectrum of an element in a commutative Banach algebra is an
image of its Gelfand transform, the �rst part of the proof is �nished.
Let us take µ ∈ N and f - a holomorphic function de�ned on some open
neighborhood of σ(µ). Then f acts on µ and so there exists ν := f(µ) such
that

∀
ϕ∈M(M(T))

ϕ(ν) = f(ϕ(µ)). (1)

Let λ ∈ σ(ν). Then, from the spectral mapping theorem (σ(ν) = f(σ(µ)))
we can �nd α ∈ σ(µ) satisfying f(α) = λ. Since µ ∈ N there is a sequence
(nk) for which

lim
k→∞

µ̂(nk) = α.

Using continuity of f and (1) we have

λ = f(α) = lim
k→∞

f(µ̂(nk)) = lim
k→∞

ν̂(nk).

Hence σ(ν) = ν̂(Z) and the whole proof is �nished.
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The set N does not have Banach algebra structure so it is convenient to
introduce the set of 'suitable perturbations'.

De�nition 3. We say that a measure µ ∈M(T) is spectrally reasonable,
if µ + ν ∈ N for all ν ∈ N . The set of all spectrally reasonable measures
will be denoted by S .

It is clear from the de�nition that the set S ⊂ N is closed under addition
and multiplication by complex numbers. Before we show that it has Banach
algebra structure we will prove an auxiliary lemma.

Lemma 4. Spectrally reasonable measures have the following properties:

1. If µ ∈ S and ν ∈ N , then µ ∗ ν ∈ N .

2. If µ ∈ S is invertible, then µ−1 ∈ S .

Proof. Let us take µ ∈ S and consider �rst only invertible ν ∈ N . Then,
by the spectral mapping theorem ν−1 ∈ N . From the de�nition of S we
have µ+ ν−1 ∈ N . Now,

λ ∈ σ(µ ∗ ν)⇔ 0 ∈ σ(µ ∗ ν − λδ0)⇔ 0 ∈ σ(µ− λν−1).

Since the set N is closed under multiplication by scalars −λν−1 ∈ N which
by the de�nition of S leads to µ−λν−1 ∈ N . Hence, there exists a sequence
of integers (nk) such that

lim
k→∞

(
µ̂(nk)−

λ

ν̂(nk)

)
= 0.

This is obviously equivalent to

lim
k→∞

(̂µ ∗ ν)(nk) = λ

which shows that µ ∗ ν ∈ N . For general ν ∈ N we take α ∈ R+ such that
ν + αδ0 is invertible (we may put any α > r(ν)). Then

µ ∗ ν = µ ∗ (ν + αδ0 − αδ0) = µ ∗ (ν + αδ)− αµ.

From the earlier part of the proof µ ∗ (ν + αδ) ∈ N and �nally µ ∗ ν ∈ N
which gives the �rst claim of the lemma.
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We move to the second statement. Let us take an invertible µ ∈ S and
ν ∈ N . Then, similarly to previous arguments we have

λ ∈ σ(µ−1 + ν)⇔ 0 ∈ σ(µ−1 + ν − λδ0)⇔ 0 ∈ σ(µ ∗ ν + δ0 − λµ).

From the �rst part of the lemma we have µ ∗ ν + δ0 ∈ N which gives the
desired conclusion in exactly the same way as before.

We are ready now to show that S has Banach algebra structure.

Theorem 5. The set S is closed, unital ∗-subalgebra of M(T).

Proof. Closedness and involutivness of S follows directly from Proposition
2. Of course, δ0 ∈ S and so it is enough to prove that if µ1, µ2 ∈ S , then
µ1 ∗µ2 ∈ S . Let us take ν ∈ N and assume �rst that µ2 is invertible. Then

λ ∈ σ(µ1 ∗ µ2 + ν)⇔ 0 ∈ σ(µ1 ∗ µ2 + ν − λδ0)⇔ 0 ∈ σ(µ1− λµ−12 + ν ∗ µ−12 ).

From the previous lemma (second part) µ−12 ∈ S and so µ1 − λµ−12 ∈ S .
Moreover, from the the �rst part of the last lemma ν ∗µ−12 ∈ N which shows
µ1 − λµ−12 + ν ∗ µ−12 ∈ N and we are able to proceed analogously as in the
proof of the lemma. For general µ2 we take once again α ∈ R+ such that
µ2 + αδ0 is invertible and then

µ1 ∗ µ2 + ν = µ1 ∗ (µ2 + αδ0)− αµ1 + ν.

From the �rst part we obtain µ1 ∗ (µ2 + αδ0)− αµ1 ∈ S which �nishes the
proof.

Now, we will examine other relevant features of S .

Proposition 6. The algebra S is a symmetric Banach ∗-algebra, i.e.

∀
ϕ∈M(S )

∀
µ∈S

ϕ(µ̃) = ϕ(µ).

Proof. This is not di�cult, since for µ = µ̃ ∈ S we know that σ(µ) ⊂ R
which gives

ϕ(µ̃) = ϕ(µ) = ϕ(µ) for all ϕ ∈ S .

For general µ ∈ S we use standard decomposition into hermitian and anti-
hermitian part

µ =
µ+ µ̃

2
+ i

µ− µ̃
2i

and the result follows from the previous argument.
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The last proposition leads to the corollary which sheds some light on the
structure of M(S ).

Theorem 7. The set Z identi�ed with functionals µ 7→ µ̂(n) is dense in S .

Proof. Let Ŝ = {µ̂ : µ ∈ S }. The assertion of Proposition 6 implies that
Â ⊂ C(M(S )) is a self-adjoint subalgebra which contains constant function.
Hence from the Stone - Weierstrass theorem Â is dense in C(M(S )).
Let us assume on the contrary that Z 6= M(S ). Then from the Urysohn's
lemma (in fact it follows just from complete regularity of M(S )) there exists
f ∈ C(M(S )) such that f |Z ≡ 0 and f(ϕ) = 1 for some ϕ ∈M(S )\Z. Using
the density of Â in C(M(S )) we �nd µ ∈ S such that ||µ̂− f ||C(M(S )) <

1
3
.

It gives |µ̂|Z < 1
3
and |µ̂(ϕ)| > 2

3
. This is impossible because µ ∈ N and so

there exists a sequence (nk) satisfying

lim
k→∞

µ̂(nk) = µ̂(ϕ).

We will determine some members of S . In our paper we have proved that
the sum of two measures with natural spectra has natural spectrum if one of
summands has Fourier coe�cients tending to zero. The set of measures in
M0(T) with natural spectrum is exactly the Zafran's ideal C . Thus, in our
present terminology we can formulate this result as follows.

Theorem 8. C ⊂ S .
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